初始化模型应用
This commit is contained in:
		
						commit
						6a16d3fafb
					
				|  | @ -0,0 +1,18 @@ | |||
| FROM python:3.7.7-slim-stretch | ||||
| ENV PYTHONUNBUFFERED 1 | ||||
| RUN sed -i s@/deb.debian.org/@/mirrors.aliyun.com/@g /etc/apt/sources.list | ||||
| RUN cat /etc/apt/sources.list | ||||
| RUN apt-get update \ | ||||
|     && apt-get install -y make \ | ||||
|     && apt-get clean \ | ||||
|     && rm -rf /var/lib/apt/lists/* | ||||
| RUN mkdir -p /app | ||||
| WORKDIR /app | ||||
| COPY requirements.txt /app | ||||
| RUN python -m venv . | ||||
| RUN pip install pip==20.1.1 | ||||
| RUN pip install setuptools==46.1.3 | ||||
| RUN pip install --no-cache-dir -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple | ||||
| COPY ./app /app | ||||
| EXPOSE 5000 | ||||
| CMD ["gunicorn", "--bind", ":5000", "server:app"] | ||||
|  | @ -0,0 +1,46 @@ | |||
| # 道路病害检测 | ||||
| 
 | ||||
| ## 利用了cnn网络和unet网络进行道路裂缝和坑洼图片的检测.  | ||||
| 
 | ||||
| ## API 接口 | ||||
| 
 | ||||
| ### 道路裂缝检测接口(U-Net CNN) | ||||
| 
 | ||||
| - 请求 | ||||
| 
 | ||||
| ```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/segment ``` | ||||
| 
 | ||||
| - 返回接口 | ||||
| 
 | ||||
| | 名称   | 参数 | 类型 | 说明 | | ||||
| |------|------|-------|-------| | ||||
| | 返回结果 | result | bool | 是否有裂缝 | | ||||
| | 返回图片 | img | string | 图像的base64编码字符串 | | ||||
| 
 | ||||
| 
 | ||||
| ### 道路坑洼检测接口(R-CNN) | ||||
| 
 | ||||
| ```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/detect/rcnn ``` | ||||
| 
 | ||||
| 
 | ||||
| - 返回接口 | ||||
| 
 | ||||
| | 名称   | 参数 | 类型 | 说明 | | ||||
| |------|------|-------|-------| | ||||
| | 返回结果 | result | bool | 是否有坑洼 | | ||||
| | 返回图片 | img | string | 图像的base64编码字符串 | | ||||
| 
 | ||||
| 
 | ||||
| ### 裂缝和坑洼检测接口 | ||||
| 
 | ||||
| ```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/ ``` | ||||
| 
 | ||||
| 
 | ||||
| - 返回接口 | ||||
| 
 | ||||
| | 名称   | 参数 | 类型     | 说明               | | ||||
| |------|------|--------|------------------| | ||||
| | 接口编码 | code | int    | 0:正常 ; 10001: 异常 | | ||||
| | 原始图片 | img_src | string | 图像的base64编码字符串   | | ||||
| | 是否有裂缝 | crack | bool | 是否有裂缝 | | ||||
| | 是否有坑洼 | pothole | bool | 是否有坑洼 | | ||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							|  | @ -0,0 +1,70 @@ | |||
| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================== | ||||
| 
 | ||||
| """A module for helper tensorflow ops.""" | ||||
| 
 | ||||
| import tensorflow as tf | ||||
| 
 | ||||
| 
 | ||||
| def reframe_box_masks_to_image_masks(box_masks, boxes, image_height, | ||||
|                                      image_width): | ||||
|     """Transforms the box masks back to full image masks. | ||||
| 
 | ||||
|   Embeds masks in bounding boxes of larger masks whose shapes correspond to | ||||
|   image shape. | ||||
| 
 | ||||
|   Args: | ||||
|     box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width]. | ||||
|     boxes: A tf.float32 tensor of size [num_masks, 4] containing the box | ||||
|            corners. Row i contains [ymin, xmin, ymax, xmax] of the box | ||||
|            corresponding to mask i. Note that the box corners are in | ||||
|            normalized coordinates. | ||||
|     image_height: Image height. The output mask will have the same height as | ||||
|                   the image height. | ||||
|     image_width: Image width. The output mask will have the same width as the | ||||
|                  image width. | ||||
| 
 | ||||
|   Returns: | ||||
|     A tf.float32 tensor of size [num_masks, image_height, image_width]. | ||||
|   """ | ||||
| 
 | ||||
|     # TODO(rathodv): Make this a public function. | ||||
|     def reframe_box_masks_to_image_masks_default(): | ||||
|         """The default function when there are more than 0 box masks.""" | ||||
| 
 | ||||
|         def transform_boxes_relative_to_boxes(boxes, reference_boxes): | ||||
|             boxes = tf.reshape(boxes, [-1, 2, 2]) | ||||
|             min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1) | ||||
|             max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1) | ||||
|             transformed_boxes = (boxes - min_corner) / (max_corner - min_corner) | ||||
|             return tf.reshape(transformed_boxes, [-1, 4]) | ||||
| 
 | ||||
|         box_masks_expanded = tf.expand_dims(box_masks, axis=3) | ||||
|         num_boxes = tf.shape(box_masks_expanded)[0] | ||||
|         unit_boxes = tf.concat( | ||||
|             [tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1) | ||||
|         reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes) | ||||
|         return tf.image.crop_and_resize( | ||||
|             image=box_masks_expanded, | ||||
|             boxes=reverse_boxes, | ||||
|             box_ind=tf.range(num_boxes), | ||||
|             crop_size=[image_height, image_width], | ||||
|             extrapolation_value=0.0) | ||||
| 
 | ||||
|     image_masks = tf.cond( | ||||
|         tf.shape(box_masks)[0] > 0, | ||||
|         reframe_box_masks_to_image_masks_default, | ||||
|         lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32)) | ||||
|     return tf.squeeze(image_masks, axis=3) | ||||
|  | @ -0,0 +1,27 @@ | |||
| import tensorflow as tf | ||||
| import numpy as np | ||||
| 
 | ||||
| 
 | ||||
| def serve_unet_model(): | ||||
|     TFLITE_MODEL = "/app/UNet_25_Crack.tflite" | ||||
| 
 | ||||
|     tflite_interpreter = tf.lite.Interpreter(model_path=TFLITE_MODEL) | ||||
| 
 | ||||
|     input_details = tflite_interpreter.get_input_details() | ||||
|     output_details = tflite_interpreter.get_output_details() | ||||
|     tflite_interpreter.allocate_tensors() | ||||
|     height = input_details[0]['shape'][1] | ||||
|     width = input_details[0]['shape'][2] | ||||
| 
 | ||||
|     return tflite_interpreter, height, width, input_details, output_details | ||||
| 
 | ||||
| 
 | ||||
| def serve_rcnn_model(): | ||||
|     detection_graph = tf.Graph() | ||||
|     with detection_graph.as_default(): | ||||
|         od_graph_def = tf.compat.v1.GraphDef() | ||||
|         with tf.compat.v1.gfile.GFile("/app/frozen_inference_graph.pb", 'rb') as fid: | ||||
|             serialized_graph = fid.read() | ||||
|             od_graph_def.ParseFromString(serialized_graph) | ||||
|             tf.import_graph_def(od_graph_def, name='') | ||||
|     return detection_graph | ||||
|  | @ -0,0 +1,239 @@ | |||
| import base64 | ||||
| 
 | ||||
| import flask | ||||
| from flask import Flask, jsonify | ||||
| import numpy as np | ||||
| import io | ||||
| from PIL import Image, ImageDraw | ||||
| import tensorflow as tf | ||||
| import ops as utils_ops | ||||
| import visualization_utils as vis_util | ||||
| 
 | ||||
| from serve import serve_unet_model | ||||
| from serve import serve_rcnn_model | ||||
| 
 | ||||
| app = Flask(__name__) | ||||
| 
 | ||||
| 
 | ||||
| def load_unet_model(): | ||||
|     global tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c | ||||
|     tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c = serve_unet_model() | ||||
| 
 | ||||
| 
 | ||||
| def load_rcnn_model(): | ||||
|     global detection_graph | ||||
|     detection_graph = serve_rcnn_model() | ||||
| 
 | ||||
| 
 | ||||
| load_unet_model() | ||||
| load_rcnn_model() | ||||
| 
 | ||||
| 
 | ||||
| def prepare_img(image, type): | ||||
|     if type == "detect": | ||||
|         return image.resize((width, height)) | ||||
|     elif type == "segment": | ||||
|         return image.resize((width_c, height_c)) | ||||
| 
 | ||||
| 
 | ||||
| def load_image_into_numpy_array(image): | ||||
|     (im_width, im_height) = image.size | ||||
|     return np.array(image.getdata()).reshape( | ||||
|         (im_height, im_width, 3)).astype(np.uint8) | ||||
| 
 | ||||
| 
 | ||||
| @app.route("/detect/rcnn", methods=["POST"]) | ||||
| def detect_rcnn(): | ||||
|     if flask.request.method == "POST": | ||||
|         if flask.request.files.get("image"): | ||||
|             image = Image.open(flask.request.files["image"]) | ||||
|             image_np = load_image_into_numpy_array(image) | ||||
|             # image_np_expanded = np.expand_dims(image_np, axis=0) | ||||
|             output_dict = run_inference_for_single_image(image_np, detection_graph) | ||||
|             category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}} | ||||
|             print(output_dict.get('detection_masks')) | ||||
|             i, is_crack = vis_util.visualize_boxes_and_labels_on_image_array( | ||||
|                 image_np, | ||||
|                 output_dict['detection_boxes'], | ||||
|                 output_dict['detection_classes'], | ||||
|                 output_dict['detection_scores'], | ||||
|                 category_index, | ||||
|                 instance_masks=output_dict.get('detection_masks'), | ||||
|                 use_normalized_coordinates=True, | ||||
|                 line_thickness=8, | ||||
|                 skip_scores=True, | ||||
|                 skip_labels=True) | ||||
|             img = Image.fromarray(image_np.astype("uint8")) | ||||
|             img = img.resize((128, 128)) | ||||
|             raw_bytes = io.BytesIO() | ||||
|             img.save(raw_bytes, "JPEG") | ||||
|             raw_bytes.seek(0) | ||||
|             img_byte = raw_bytes.getvalue() | ||||
|             img_str = base64.b64encode(img_byte) | ||||
|             data = { | ||||
|                 "result": is_crack, | ||||
|                 "img": img_str.decode('utf-8') | ||||
|             } | ||||
|             return jsonify(data) | ||||
|         else: | ||||
|             return "Could not find image" | ||||
|     return "Please use POST method" | ||||
| 
 | ||||
| 
 | ||||
| @app.route("/segment", methods=["POST"]) | ||||
| def segment(): | ||||
|     if flask.request.method == "POST": | ||||
|         if flask.request.files.get("image"): | ||||
|             # read the image in PIL format | ||||
|             img = prepare_img(Image.open(flask.request.files["image"]), "segment") | ||||
| 
 | ||||
|             input_data = np.expand_dims(img, axis=0) | ||||
|             input_data = np.float32(input_data) / 255.0 | ||||
|             tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data) | ||||
|             tflite_interpreter_c.invoke() | ||||
|             result = tflite_interpreter_c.get_tensor(output_details_c[0]['index']) | ||||
|             result = result > 0.5 | ||||
|             result = result * 255 | ||||
|             mask = np.squeeze(result) | ||||
|             bg = np.asarray(img).copy() | ||||
|             is_crack = False | ||||
|             for i in range(len(mask)): | ||||
|                 for j in range(len(mask[i])): | ||||
|                     if mask[i][j] > 0: | ||||
|                         bg[i][j][0] = 0 | ||||
|                         bg[i][j][1] = 0 | ||||
|                         bg[i][j][2] = 255 | ||||
|                         is_crack = True | ||||
| 
 | ||||
|             img = Image.fromarray(bg.astype("uint8")) | ||||
|             raw_bytes = io.BytesIO() | ||||
|             img.save(raw_bytes, "JPEG") | ||||
|             raw_bytes.seek(0) | ||||
|             img_byte = raw_bytes.getvalue() | ||||
|             img_str = base64.b64encode(img_byte) | ||||
|             data = { | ||||
|                 "result": is_crack, | ||||
|                 "img": img_str.decode('utf-8') | ||||
|             } | ||||
|             return jsonify(data) | ||||
|         else: | ||||
|             return "Could not find image" | ||||
|     return "Please use POST method" | ||||
| 
 | ||||
| 
 | ||||
| def run_inference_for_single_image(image, graph): | ||||
|     with graph.as_default(): | ||||
|         with tf.compat.v1.Session() as sess: | ||||
|             # Get handles to input and output tensors | ||||
|             ops = tf.compat.v1.get_default_graph().get_operations() | ||||
|             all_tensor_names = { | ||||
|                 output.name for op in ops for output in op.outputs} | ||||
|             tensor_dict = {} | ||||
|             for key in [ | ||||
|                 'num_detections', 'detection_boxes', 'detection_scores', | ||||
|                 'detection_classes', 'detection_masks' | ||||
|             ]: | ||||
|                 tensor_name = key + ':0' | ||||
|                 if tensor_name in all_tensor_names: | ||||
|                     tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name( | ||||
|                         tensor_name) | ||||
|             if 'detection_masks' in tensor_dict: | ||||
|                 # The following processing is only for single image | ||||
|                 detection_boxes = tf.squeeze( | ||||
|                     tensor_dict['detection_boxes'], [0]) | ||||
|                 detection_masks = tf.squeeze( | ||||
|                     tensor_dict['detection_masks'], [0]) | ||||
|                 # Reframe is required to translate mask from box coordinates to image coordinates and fit the image | ||||
|                 # size. | ||||
|                 real_num_detection = tf.cast( | ||||
|                     tensor_dict['num_detections'][0], tf.int32) | ||||
|                 detection_boxes = tf.slice(detection_boxes, [0, 0], [ | ||||
|                     real_num_detection, -1]) | ||||
|                 detection_masks = tf.slice(detection_masks, [0, 0, 0], [ | ||||
|                     real_num_detection, -1, -1]) | ||||
|                 detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( | ||||
|                     detection_masks, detection_boxes, image.shape[0], image.shape[1]) | ||||
|                 detection_masks_reframed = tf.cast( | ||||
|                     tf.greater(detection_masks_reframed, 0.5), tf.uint8) | ||||
|                 # Follow the convention by adding back the batch dimension | ||||
|                 tensor_dict['detection_masks'] = tf.expand_dims( | ||||
|                     detection_masks_reframed, 0) | ||||
|             image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0') | ||||
| 
 | ||||
|             # Run inference | ||||
|             output_dict = sess.run(tensor_dict, | ||||
|                                    feed_dict={image_tensor: np.expand_dims(image, 0)}) | ||||
| 
 | ||||
|             # all outputs are float32 numpy arrays, so convert types as appropriate | ||||
|             output_dict['num_detections'] = int( | ||||
|                 output_dict['num_detections'][0]) | ||||
|             output_dict['detection_classes'] = output_dict[ | ||||
|                 'detection_classes'][0].astype(np.uint8) | ||||
|             output_dict['detection_boxes'] = output_dict['detection_boxes'][0] | ||||
|             output_dict['detection_scores'] = output_dict['detection_scores'][0] | ||||
|             if 'detection_masks' in output_dict: | ||||
|                 output_dict['detection_masks'] = output_dict['detection_masks'][0] | ||||
|     return output_dict | ||||
| 
 | ||||
| 
 | ||||
| @app.route('/', methods=["POST"]) | ||||
| def index(): | ||||
|     if flask.request.method == "POST": | ||||
|         if flask.request.files.get("image"): | ||||
|             img_src = Image.open(flask.request.files["image"]) | ||||
|             # start crack detection | ||||
|             img_segment = prepare_img(img_src, "segment") | ||||
|             input_data = np.expand_dims(img_segment, axis=0) | ||||
|             input_data = np.float32(input_data) / 255.0 | ||||
|             tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data) | ||||
|             tflite_interpreter_c.invoke() | ||||
|             result = tflite_interpreter_c.get_tensor(output_details_c[0]['index']) | ||||
|             result = result > 0.5 | ||||
|             result = result * 255 | ||||
|             mask = np.squeeze(result) | ||||
|             is_crack = False | ||||
|             for i in range(len(mask)): | ||||
|                 for j in range(len(mask[i])): | ||||
|                     if mask[i][j] > 0: | ||||
|                         is_crack = True | ||||
|                         break | ||||
| 
 | ||||
| 
 | ||||
|             # start pothole detection | ||||
|             image_np = load_image_into_numpy_array(img_src) | ||||
|             # image_np_expanded = np.expand_dims(image_np, axis=0) | ||||
|             output_dict = run_inference_for_single_image(image_np, detection_graph) | ||||
|             category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}} | ||||
|             _, is_pothole = vis_util.visualize_boxes_and_labels_on_image_array( | ||||
|                 image_np, | ||||
|                 output_dict['detection_boxes'], | ||||
|                 output_dict['detection_classes'], | ||||
|                 output_dict['detection_scores'], | ||||
|                 category_index, | ||||
|                 instance_masks=output_dict.get('detection_masks'), | ||||
|                 use_normalized_coordinates=True, | ||||
|                 line_thickness=8, | ||||
|                 skip_scores=True, | ||||
|                 skip_labels=True) | ||||
|             raw_bytes = io.BytesIO() | ||||
|             img_src.save(raw_bytes, "JPEG") | ||||
|             raw_bytes.seek(0) | ||||
|             img_byte = raw_bytes.getvalue() | ||||
|             img_str = base64.b64encode(img_byte) | ||||
|             data = { | ||||
|                 "code": 0, | ||||
|                 "crack": is_crack, | ||||
|                 "pothole": is_pothole, | ||||
|                 "img_src": img_str.decode('utf-8') | ||||
|             } | ||||
|             return jsonify(data) | ||||
|         else: | ||||
|             data = { | ||||
|                 "code": 10001, | ||||
|                 "msg": "Could not find image" | ||||
|             } | ||||
|             return jsonify(data) | ||||
|     return "Road Damage Detection" | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     app.run() | ||||
|  | @ -0,0 +1,508 @@ | |||
| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| # ============================================================================== | ||||
| 
 | ||||
| """A set of functions that are used for visualization. | ||||
| These functions often receive an image, perform some visualization on the image. | ||||
| The functions do not return a value, instead they modify the image itself. | ||||
| """ | ||||
| import abc | ||||
| import collections | ||||
| # Set headless-friendly backend. | ||||
| import matplotlib; | ||||
| 
 | ||||
| matplotlib.use('Agg')  # pylint: disable=multiple-statements | ||||
| import matplotlib.pyplot as plt  # pylint: disable=g-import-not-at-top | ||||
| import numpy as np | ||||
| import PIL.Image as Image | ||||
| import PIL.ImageColor as ImageColor | ||||
| import PIL.ImageDraw as ImageDraw | ||||
| import PIL.ImageFont as ImageFont | ||||
| import six | ||||
| from six.moves import range | ||||
| from six.moves import zip | ||||
| import tensorflow as tf | ||||
| 
 | ||||
| _TITLE_LEFT_MARGIN = 10 | ||||
| _TITLE_TOP_MARGIN = 10 | ||||
| STANDARD_COLORS = [ | ||||
|     'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque', | ||||
|     'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite', | ||||
|     'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan', | ||||
|     'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange', | ||||
|     'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet', | ||||
|     'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite', | ||||
|     'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod', | ||||
|     'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki', | ||||
|     'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue', | ||||
|     'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey', | ||||
|     'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue', | ||||
|     'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime', | ||||
|     'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid', | ||||
|     'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen', | ||||
|     'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin', | ||||
|     'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed', | ||||
|     'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', | ||||
|     'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple', | ||||
|     'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown', | ||||
|     'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue', | ||||
|     'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow', | ||||
|     'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White', | ||||
|     'WhiteSmoke', 'Yellow', 'YellowGreen' | ||||
| ] | ||||
| 
 | ||||
| 
 | ||||
| def _get_multiplier_for_color_randomness(): | ||||
|     """Returns a multiplier to get semi-random colors from successive indices. | ||||
|   This function computes a prime number, p, in the range [2, 17] that: | ||||
|   - is closest to len(STANDARD_COLORS) / 10 | ||||
|   - does not divide len(STANDARD_COLORS) | ||||
|   If no prime numbers in that range satisfy the constraints, p is returned as 1. | ||||
|   Once p is established, it can be used as a multiplier to select | ||||
|   non-consecutive colors from STANDARD_COLORS: | ||||
|   colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)] | ||||
|   """ | ||||
|     num_colors = len(STANDARD_COLORS) | ||||
|     prime_candidates = [5, 7, 11, 13, 17] | ||||
| 
 | ||||
|     # Remove all prime candidates that divide the number of colors. | ||||
|     prime_candidates = [p for p in prime_candidates if num_colors % p] | ||||
|     if not prime_candidates: | ||||
|         return 1 | ||||
| 
 | ||||
|     # Return the closest prime number to num_colors / 10. | ||||
|     abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates] | ||||
|     num_candidates = len(abs_distance) | ||||
|     inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))] | ||||
|     return prime_candidates[inds[0]] | ||||
| 
 | ||||
| 
 | ||||
| def draw_bounding_box_on_image_array(image, | ||||
|                                      ymin, | ||||
|                                      xmin, | ||||
|                                      ymax, | ||||
|                                      xmax, | ||||
|                                      color='red', | ||||
|                                      thickness=4, | ||||
|                                      display_str_list=(), | ||||
|                                      use_normalized_coordinates=True): | ||||
|     """Adds a bounding box to an image (numpy array). | ||||
|   Bounding box coordinates can be specified in either absolute (pixel) or | ||||
|   normalized coordinates by setting the use_normalized_coordinates argument. | ||||
|   Args: | ||||
|     image: a numpy array with shape [height, width, 3]. | ||||
|     ymin: ymin of bounding box. | ||||
|     xmin: xmin of bounding box. | ||||
|     ymax: ymax of bounding box. | ||||
|     xmax: xmax of bounding box. | ||||
|     color: color to draw bounding box. Default is red. | ||||
|     thickness: line thickness. Default value is 4. | ||||
|     display_str_list: list of strings to display in box | ||||
|                       (each to be shown on its own line). | ||||
|     use_normalized_coordinates: If True (default), treat coordinates | ||||
|       ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat | ||||
|       coordinates as absolute. | ||||
|   """ | ||||
|     image_pil = Image.fromarray(np.uint8(image)).convert('RGB') | ||||
|     draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color, | ||||
|                                thickness, display_str_list, | ||||
|                                use_normalized_coordinates) | ||||
|     np.copyto(image, np.array(image_pil)) | ||||
| 
 | ||||
| 
 | ||||
| def draw_bounding_box_on_image(image, | ||||
|                                ymin, | ||||
|                                xmin, | ||||
|                                ymax, | ||||
|                                xmax, | ||||
|                                color='red', | ||||
|                                thickness=4, | ||||
|                                display_str_list=(), | ||||
|                                use_normalized_coordinates=True): | ||||
|     """Adds a bounding box to an image. | ||||
|   Bounding box coordinates can be specified in either absolute (pixel) or | ||||
|   normalized coordinates by setting the use_normalized_coordinates argument. | ||||
|   Each string in display_str_list is displayed on a separate line above the | ||||
|   bounding box in black text on a rectangle filled with the input 'color'. | ||||
|   If the top of the bounding box extends to the edge of the image, the strings | ||||
|   are displayed below the bounding box. | ||||
|   Args: | ||||
|     image: a PIL.Image object. | ||||
|     ymin: ymin of bounding box. | ||||
|     xmin: xmin of bounding box. | ||||
|     ymax: ymax of bounding box. | ||||
|     xmax: xmax of bounding box. | ||||
|     color: color to draw bounding box. Default is red. | ||||
|     thickness: line thickness. Default value is 4. | ||||
|     display_str_list: list of strings to display in box | ||||
|                       (each to be shown on its own line). | ||||
|     use_normalized_coordinates: If True (default), treat coordinates | ||||
|       ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat | ||||
|       coordinates as absolute. | ||||
|   """ | ||||
|     draw = ImageDraw.Draw(image) | ||||
|     im_width, im_height = image.size | ||||
|     if use_normalized_coordinates: | ||||
|         (left, right, top, bottom) = (xmin * im_width, xmax * im_width, | ||||
|                                       ymin * im_height, ymax * im_height) | ||||
|     else: | ||||
|         (left, right, top, bottom) = (xmin, xmax, ymin, ymax) | ||||
|     if thickness > 0: | ||||
|         draw.line([(left, top), (left, bottom), (right, bottom), (right, top), | ||||
|                    (left, top)], | ||||
|                   width=thickness, | ||||
|                   fill=color) | ||||
|     try: | ||||
|         font = ImageFont.truetype('arial.ttf', 24) | ||||
|     except IOError: | ||||
|         font = ImageFont.load_default() | ||||
| 
 | ||||
|     # If the total height of the display strings added to the top of the bounding | ||||
|     # box exceeds the top of the image, stack the strings below the bounding box | ||||
|     # instead of above. | ||||
|     display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] | ||||
|     # Each display_str has a top and bottom margin of 0.05x. | ||||
|     total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) | ||||
| 
 | ||||
|     if top > total_display_str_height: | ||||
|         text_bottom = top | ||||
|     else: | ||||
|         text_bottom = bottom + total_display_str_height | ||||
|     # Reverse list and print from bottom to top. | ||||
|     for display_str in display_str_list[::-1]: | ||||
|         text_width, text_height = font.getsize(display_str) | ||||
|         margin = np.ceil(0.05 * text_height) | ||||
|         draw.rectangle( | ||||
|             [(left, text_bottom - text_height - 2 * margin), (left + text_width, | ||||
|                                                               text_bottom)], | ||||
|             fill=color) | ||||
|         draw.text( | ||||
|             (left + margin, text_bottom - text_height - margin), | ||||
|             display_str, | ||||
|             fill='black', | ||||
|             font=font) | ||||
|         text_bottom -= text_height - 2 * margin | ||||
| 
 | ||||
| 
 | ||||
| def draw_keypoints_on_image_array(image, | ||||
|                                   key_points, | ||||
|                                   keypoint_scores=None, | ||||
|                                   min_score_thresh=0.5, | ||||
|                                   color='red', | ||||
|                                   radius=2, | ||||
|                                   use_normalized_coordinates=True, | ||||
|                                   keypoint_edges=None, | ||||
|                                   keypoint_edge_color='green', | ||||
|                                   keypoint_edge_width=2): | ||||
|     """Draws keypoints on an image (numpy array). | ||||
|   Args: | ||||
|     image: a numpy array with shape [height, width, 3]. | ||||
|     key_points: a numpy array with shape [num_keypoints, 2]. | ||||
|     keypoint_scores: a numpy array with shape [num_keypoints]. If provided, only | ||||
|       those keypoints with a score above score_threshold will be visualized. | ||||
|     min_score_thresh: A scalar indicating the minimum keypoint score required | ||||
|       for a keypoint to be visualized. Note that keypoint_scores must be | ||||
|       provided for this threshold to take effect. | ||||
|     color: color to draw the keypoints with. Default is red. | ||||
|     radius: keypoint radius. Default value is 2. | ||||
|     use_normalized_coordinates: if True (default), treat keypoint values as | ||||
|       relative to the image.  Otherwise treat them as absolute. | ||||
|     keypoint_edges: A list of tuples with keypoint indices that specify which | ||||
|       keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws | ||||
|       edges from keypoint 0 to 1 and from keypoint 2 to 4. | ||||
|     keypoint_edge_color: color to draw the keypoint edges with. Default is red. | ||||
|     keypoint_edge_width: width of the edges drawn between keypoints. Default | ||||
|       value is 2. | ||||
|   """ | ||||
|     image_pil = Image.fromarray(np.uint8(image)).convert('RGB') | ||||
|     draw_keypoints_on_image(image_pil, | ||||
|                             key_points, | ||||
|                             keypoint_scores=keypoint_scores, | ||||
|                             min_score_thresh=min_score_thresh, | ||||
|                             color=color, | ||||
|                             radius=radius, | ||||
|                             use_normalized_coordinates=use_normalized_coordinates, | ||||
|                             keypoint_edges=keypoint_edges, | ||||
|                             keypoint_edge_color=keypoint_edge_color, | ||||
|                             keypoint_edge_width=keypoint_edge_width) | ||||
|     np.copyto(image, np.array(image_pil)) | ||||
| 
 | ||||
| 
 | ||||
| def draw_keypoints_on_image(image, | ||||
|                             key_points, | ||||
|                             keypoint_scores=None, | ||||
|                             min_score_thresh=0.5, | ||||
|                             color='red', | ||||
|                             radius=2, | ||||
|                             use_normalized_coordinates=True, | ||||
|                             keypoint_edges=None, | ||||
|                             keypoint_edge_color='green', | ||||
|                             keypoint_edge_width=2): | ||||
|     """Draws keypoints on an image. | ||||
|   Args: | ||||
|     image: a PIL.Image object. | ||||
|     key_points: a numpy array with shape [num_keypoints, 2]. | ||||
|     keypoint_scores: a numpy array with shape [num_keypoints]. | ||||
|     min_score_thresh: a score threshold for visualizing keypoints. Only used if | ||||
|       keypoint_scores is provided. | ||||
|     color: color to draw the keypoints with. Default is red. | ||||
|     radius: keypoint radius. Default value is 2. | ||||
|     use_normalized_coordinates: if True (default), treat keypoint values as | ||||
|       relative to the image.  Otherwise treat them as absolute. | ||||
|     keypoint_edges: A list of tuples with keypoint indices that specify which | ||||
|       keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws | ||||
|       edges from keypoint 0 to 1 and from keypoint 2 to 4. | ||||
|     keypoint_edge_color: color to draw the keypoint edges with. Default is red. | ||||
|     keypoint_edge_width: width of the edges drawn between keypoints. Default | ||||
|       value is 2. | ||||
|   """ | ||||
|     draw = ImageDraw.Draw(image) | ||||
|     im_width, im_height = image.size | ||||
|     key_points = np.array(key_points) | ||||
|     key_points_x = [k[1] for k in key_points] | ||||
|     key_points_y = [k[0] for k in key_points] | ||||
|     if use_normalized_coordinates: | ||||
|         key_points_x = tuple([im_width * x for x in key_points_x]) | ||||
|         key_points_y = tuple([im_height * y for y in key_points_y]) | ||||
|     if keypoint_scores is not None: | ||||
|         keypoint_scores = np.array(keypoint_scores) | ||||
|         valid_kpt = np.greater(keypoint_scores, min_score_thresh) | ||||
|     else: | ||||
|         valid_kpt = np.where(np.any(np.isnan(key_points), axis=1), | ||||
|                              np.zeros_like(key_points[:, 0]), | ||||
|                              np.ones_like(key_points[:, 0])) | ||||
|     valid_kpt = [v for v in valid_kpt] | ||||
| 
 | ||||
|     for keypoint_x, keypoint_y, valid in zip(key_points_x, key_points_y, valid_kpt): | ||||
|         if valid: | ||||
|             draw.ellipse([(keypoint_x - radius, keypoint_y - radius), | ||||
|                           (keypoint_x + radius, keypoint_y + radius)], | ||||
|                          outline=color, fill=color) | ||||
|     if keypoint_edges is not None: | ||||
|         for keypoint_start, keypoint_end in keypoint_edges: | ||||
|             if (keypoint_start < 0 or keypoint_start >= len(key_points) or | ||||
|                     keypoint_end < 0 or keypoint_end >= len(key_points)): | ||||
|                 continue | ||||
|             if not (valid_kpt[keypoint_start] and valid_kpt[keypoint_end]): | ||||
|                 continue | ||||
|             edge_coordinates = [ | ||||
|                 key_points_x[keypoint_start], key_points_y[keypoint_start], | ||||
|                 key_points_x[keypoint_end], key_points_y[keypoint_end] | ||||
|             ] | ||||
|             draw.line( | ||||
|                 edge_coordinates, fill=keypoint_edge_color, width=keypoint_edge_width) | ||||
| 
 | ||||
| 
 | ||||
| def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): | ||||
|     """Draws mask on an image. | ||||
|   Args: | ||||
|     image: uint8 numpy array with shape (img_height, img_height, 3) | ||||
|     mask: a uint8 numpy array of shape (img_height, img_height) with | ||||
|       values between either 0 or 1. | ||||
|     color: color to draw the keypoints with. Default is red. | ||||
|     alpha: transparency value between 0 and 1. (default: 0.4) | ||||
|   Raises: | ||||
|     ValueError: On incorrect data type for image or masks. | ||||
|   """ | ||||
|     if image.dtype != np.uint8: | ||||
|         raise ValueError('`image` not of type np.uint8') | ||||
|     if mask.dtype != np.uint8: | ||||
|         raise ValueError('`mask` not of type np.uint8') | ||||
|     if np.any(np.logical_and(mask != 1, mask != 0)): | ||||
|         raise ValueError('`mask` elements should be in [0, 1]') | ||||
|     if image.shape[:2] != mask.shape: | ||||
|         raise ValueError('The image has spatial dimensions %s but the mask has ' | ||||
|                          'dimensions %s' % (image.shape[:2], mask.shape)) | ||||
|     rgb = ImageColor.getrgb(color) | ||||
|     pil_image = Image.fromarray(image) | ||||
| 
 | ||||
|     solid_color = np.expand_dims( | ||||
|         np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) | ||||
|     pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') | ||||
|     pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L') | ||||
|     pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) | ||||
|     np.copyto(image, np.array(pil_image.convert('RGB'))) | ||||
| 
 | ||||
| 
 | ||||
| def visualize_boxes_and_labels_on_image_array( | ||||
|         image, | ||||
|         boxes, | ||||
|         classes, | ||||
|         scores, | ||||
|         category_index, | ||||
|         instance_masks=None, | ||||
|         instance_boundaries=None, | ||||
|         keypoints=None, | ||||
|         keypoint_scores=None, | ||||
|         keypoint_edges=None, | ||||
|         track_ids=None, | ||||
|         use_normalized_coordinates=False, | ||||
|         max_boxes_to_draw=20, | ||||
|         min_score_thresh=.5, | ||||
|         agnostic_mode=False, | ||||
|         line_thickness=4, | ||||
|         groundtruth_box_visualization_color='black', | ||||
|         skip_boxes=False, | ||||
|         skip_scores=False, | ||||
|         skip_labels=False, | ||||
|         skip_track_ids=False): | ||||
|     """Overlay labeled boxes on an image with formatted scores and label names. | ||||
|   This function groups boxes that correspond to the same location | ||||
|   and creates a display string for each detection and overlays these | ||||
|   on the image. Note that this function modifies the image in place, and returns | ||||
|   that same image. | ||||
|   Args: | ||||
|     image: uint8 numpy array with shape (img_height, img_width, 3) | ||||
|     boxes: a numpy array of shape [N, 4] | ||||
|     classes: a numpy array of shape [N]. Note that class indices are 1-based, | ||||
|       and match the keys in the label map. | ||||
|     scores: a numpy array of shape [N] or None.  If scores=None, then | ||||
|       this function assumes that the boxes to be plotted are groundtruth | ||||
|       boxes and plot all boxes as black with no classes or scores. | ||||
|     category_index: a dict containing category dictionaries (each holding | ||||
|       category index `id` and category name `name`) keyed by category indices. | ||||
|     instance_masks: a numpy array of shape [N, image_height, image_width] with | ||||
|       values ranging between 0 and 1, can be None. | ||||
|     instance_boundaries: a numpy array of shape [N, image_height, image_width] | ||||
|       with values ranging between 0 and 1, can be None. | ||||
|     keypoints: a numpy array of shape [N, num_keypoints, 2], can | ||||
|       be None. | ||||
|     keypoint_scores: a numpy array of shape [N, num_keypoints], can be None. | ||||
|     keypoint_edges: A list of tuples with keypoint indices that specify which | ||||
|       keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws | ||||
|       edges from keypoint 0 to 1 and from keypoint 2 to 4. | ||||
|     track_ids: a numpy array of shape [N] with unique track ids. If provided, | ||||
|       color-coding of boxes will be determined by these ids, and not the class | ||||
|       indices. | ||||
|     use_normalized_coordinates: whether boxes is to be interpreted as | ||||
|       normalized coordinates or not. | ||||
|     max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw | ||||
|       all boxes. | ||||
|     min_score_thresh: minimum score threshold for a box or keypoint to be | ||||
|       visualized. | ||||
|     agnostic_mode: boolean (default: False) controlling whether to evaluate in | ||||
|       class-agnostic mode or not.  This mode will display scores but ignore | ||||
|       classes. | ||||
|     line_thickness: integer (default: 4) controlling line width of the boxes. | ||||
|     groundtruth_box_visualization_color: box color for visualizing groundtruth | ||||
|       boxes | ||||
|     skip_boxes: whether to skip the drawing of bounding boxes. | ||||
|     skip_scores: whether to skip score when drawing a single detection | ||||
|     skip_labels: whether to skip label when drawing a single detection | ||||
|     skip_track_ids: whether to skip track id when drawing a single detection | ||||
|   Returns: | ||||
|     uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes. | ||||
|   """ | ||||
|     # Create a display string (and color) for every box location, group any boxes | ||||
|     # that correspond to the same location. | ||||
|     box_to_display_str_map = collections.defaultdict(list) | ||||
|     box_to_color_map = collections.defaultdict(str) | ||||
|     box_to_instance_masks_map = {} | ||||
|     box_to_instance_boundaries_map = {} | ||||
|     box_to_keypoints_map = collections.defaultdict(list) | ||||
|     box_to_keypoint_scores_map = collections.defaultdict(list) | ||||
|     box_to_track_ids_map = {} | ||||
|     is_crack = False | ||||
|     if not max_boxes_to_draw: | ||||
|         max_boxes_to_draw = boxes.shape[0] | ||||
|     for i in range(boxes.shape[0]): | ||||
|         if max_boxes_to_draw == len(box_to_color_map): | ||||
|             break | ||||
|         if scores is None or scores[i] > min_score_thresh: | ||||
|             box = tuple(boxes[i].tolist()) | ||||
|             if instance_masks is not None: | ||||
|                 box_to_instance_masks_map[box] = instance_masks[i] | ||||
|             if instance_boundaries is not None: | ||||
|                 box_to_instance_boundaries_map[box] = instance_boundaries[i] | ||||
|             if keypoints is not None: | ||||
|                 box_to_keypoints_map[box].extend(keypoints[i]) | ||||
|             if keypoint_scores is not None: | ||||
|                 box_to_keypoint_scores_map[box].extend(keypoint_scores[i]) | ||||
|             if track_ids is not None: | ||||
|                 box_to_track_ids_map[box] = track_ids[i] | ||||
|             if scores is None: | ||||
|                 box_to_color_map[box] = groundtruth_box_visualization_color | ||||
|             else: | ||||
|                 display_str = '' | ||||
|                 if not skip_labels: | ||||
|                     if not agnostic_mode: | ||||
|                         if classes[i] in six.viewkeys(category_index): | ||||
|                             class_name = category_index[classes[i]]['name'] | ||||
|                         else: | ||||
|                             class_name = 'N/A' | ||||
|                         display_str = str(class_name) | ||||
|                 if not skip_scores: | ||||
|                     if not display_str: | ||||
|                         display_str = '{}%'.format(round(100 * scores[i])) | ||||
|                     else: | ||||
|                         display_str = '{}: {}%'.format(display_str, round(100 * scores[i])) | ||||
|                 if not skip_track_ids and track_ids is not None: | ||||
|                     if not display_str: | ||||
|                         display_str = 'ID {}'.format(track_ids[i]) | ||||
|                     else: | ||||
|                         display_str = '{}: ID {}'.format(display_str, track_ids[i]) | ||||
|                 box_to_display_str_map[box].append(display_str) | ||||
|                 if agnostic_mode: | ||||
|                     box_to_color_map[box] = 'DarkOrange' | ||||
|                 elif track_ids is not None: | ||||
|                     prime_multipler = _get_multiplier_for_color_randomness() | ||||
|                     box_to_color_map[box] = STANDARD_COLORS[ | ||||
|                         (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)] | ||||
|                 else: | ||||
|                     box_to_color_map[box] = STANDARD_COLORS[ | ||||
|                         classes[i] % len(STANDARD_COLORS)] | ||||
|     is_crack = len(box_to_color_map) > 0 | ||||
|     # Draw all boxes onto image. | ||||
|     for box, color in box_to_color_map.items(): | ||||
|         ymin, xmin, ymax, xmax = box | ||||
|         if instance_masks is not None: | ||||
|             draw_mask_on_image_array( | ||||
|                 image, | ||||
|                 box_to_instance_masks_map[box], | ||||
|                 color=color | ||||
|             ) | ||||
|         if instance_boundaries is not None: | ||||
|             draw_mask_on_image_array( | ||||
|                 image, | ||||
|                 box_to_instance_boundaries_map[box], | ||||
|                 color='red', | ||||
|                 alpha=1.0 | ||||
|             ) | ||||
|         draw_bounding_box_on_image_array( | ||||
|             image, | ||||
|             ymin, | ||||
|             xmin, | ||||
|             ymax, | ||||
|             xmax, | ||||
|             color=color, | ||||
|             thickness=0 if skip_boxes else line_thickness, | ||||
|             display_str_list=box_to_display_str_map[box], | ||||
|             use_normalized_coordinates=use_normalized_coordinates) | ||||
|         if keypoints is not None: | ||||
|             keypoint_scores_for_box = None | ||||
|             if box_to_keypoint_scores_map: | ||||
|                 keypoint_scores_for_box = box_to_keypoint_scores_map[box] | ||||
|             draw_keypoints_on_image_array( | ||||
|                 image, | ||||
|                 box_to_keypoints_map[box], | ||||
|                 keypoint_scores_for_box, | ||||
|                 min_score_thresh=min_score_thresh, | ||||
|                 color=color, | ||||
|                 radius=line_thickness / 2, | ||||
|                 use_normalized_coordinates=use_normalized_coordinates, | ||||
|                 keypoint_edges=keypoint_edges, | ||||
|                 keypoint_edge_color=color, | ||||
|                 keypoint_edge_width=line_thickness // 2) | ||||
| 
 | ||||
|     return image, is_crack | ||||
|  | @ -0,0 +1,48 @@ | |||
| absl-py==0.9.0 | ||||
| astunparse==1.6.3 | ||||
| cachetools==4.1.0 | ||||
| certifi==2020.4.5.1 | ||||
| chardet==3.0.4 | ||||
| click==7.1.2 | ||||
| cycler==0.10.0 | ||||
| Flask==1.1.2 | ||||
| gast==0.3.3 | ||||
| gevent==20.5.0 | ||||
| google-auth==1.15.0 | ||||
| google-auth-oauthlib==0.4.1 | ||||
| google-pasta==0.2.0 | ||||
| greenlet==0.4.15 | ||||
| grpcio==1.29.0 | ||||
| gunicorn==20.0.4 | ||||
| h5py==2.10.0 | ||||
| idna==2.9 | ||||
| importlib-metadata==1.6.0 | ||||
| itsdangerous==1.1.0 | ||||
| Jinja2==2.11.2 | ||||
| Keras-Preprocessing==1.1.2 | ||||
| Markdown==3.2.2 | ||||
| MarkupSafe==1.1.1 | ||||
| matplotlib==3.2.1 | ||||
| numpy==1.18.4 | ||||
| oauthlib==3.1.0 | ||||
| opt-einsum==3.2.1 | ||||
| Pillow==7.1.2 | ||||
| protobuf==3.11.3 | ||||
| pyasn1==0.4.8 | ||||
| pyasn1-modules==0.2.8 | ||||
| pyparsing==2.4.7 | ||||
| python-dateutil==2.8.1 | ||||
| requests==2.23.0 | ||||
| requests-oauthlib==1.3.0 | ||||
| rsa==4.0 | ||||
| scipy==1.4.1 | ||||
| six==1.15.0 | ||||
| tensorboard==2.2.1 | ||||
| tensorboard-plugin-wit==1.6.0.post3 | ||||
| tensorflow==2.2.0 | ||||
| tensorflow-estimator==2.2.0 | ||||
| termcolor==1.1.0 | ||||
| urllib3==1.25.9 | ||||
| Werkzeug==1.0.1 | ||||
| wrapt==1.12.1 | ||||
| zipp==3.1.0 | ||||
		Loading…
	
		Reference in New Issue