Compare commits
2 Commits
x86_bridge
...
master
Author | SHA1 | Date |
---|---|---|
chenxingming | bf1b6730b0 | |
chenxingming | 7f1f1e9e76 |
|
@ -1,12 +1,10 @@
|
||||||
FROM tensorflow/tensorflow:2.5.1
|
FROM python:3.7.16
|
||||||
|
|
||||||
RUN apt-get install make g++ gcc
|
RUN pip install gunicorn==20.1.0
|
||||||
RUN pip3 install gunicorn
|
RUN pip install setuptools==46.1.3
|
||||||
RUN pip3 install setuptools==46.1.3
|
|
||||||
|
|
||||||
RUN mkdir -p /app
|
RUN mkdir -p /app
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY requirements.txt /app
|
COPY requirements.txt /app
|
||||||
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,16 @@
|
||||||
|
FROM nvcr.io/nvidia/l4t-tensorflow:r32.6.1-tf2.5-py3
|
||||||
|
RUN apt-get install make g++ gcc
|
||||||
|
RUN pip3 install gunicorn
|
||||||
|
RUN pip3 install setuptools==46.1.3
|
||||||
|
|
||||||
|
RUN mkdir -p /app
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY requirements.txt /app
|
||||||
|
RUN pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||||
|
|
||||||
|
COPY ./app /app
|
||||||
|
EXPOSE 5000
|
||||||
|
CMD ["gunicorn", "--bind", ":5000", "server:app"]
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -1,6 +1,6 @@
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import keras.models
|
|
||||||
|
|
||||||
def serve_unet_model():
|
def serve_unet_model():
|
||||||
TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
|
TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
|
||||||
|
@ -25,9 +25,3 @@ def serve_rcnn_model():
|
||||||
od_graph_def.ParseFromString(serialized_graph)
|
od_graph_def.ParseFromString(serialized_graph)
|
||||||
tf.import_graph_def(od_graph_def, name='')
|
tf.import_graph_def(od_graph_def, name='')
|
||||||
return detection_graph
|
return detection_graph
|
||||||
|
|
||||||
|
|
||||||
def serve_bridge_model():
|
|
||||||
mp = "../app/crack_model.h5"
|
|
||||||
model = keras.models.load_model(mp)
|
|
||||||
return model
|
|
||||||
|
|
|
@ -8,9 +8,8 @@ from PIL import Image, ImageDraw
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import ops as utils_ops
|
import ops as utils_ops
|
||||||
import visualization_utils as vis_util
|
import visualization_utils as vis_util
|
||||||
import cv2
|
|
||||||
|
|
||||||
from serve import serve_unet_model, serve_bridge_model
|
from serve import serve_unet_model
|
||||||
from serve import serve_rcnn_model
|
from serve import serve_rcnn_model
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
|
@ -223,7 +222,7 @@ def index():
|
||||||
raw_bytes = io.BytesIO()
|
raw_bytes = io.BytesIO()
|
||||||
raw_src = io.BytesIO()
|
raw_src = io.BytesIO()
|
||||||
img.save(raw_bytes, "JPEG")
|
img.save(raw_bytes, "JPEG")
|
||||||
img_src.save(raw_src, "JPEG")
|
img_src.save(raw_src,"JPEG")
|
||||||
raw_bytes.seek(0)
|
raw_bytes.seek(0)
|
||||||
raw_src.seek(0)
|
raw_src.seek(0)
|
||||||
img_byte = raw_bytes.getvalue()
|
img_byte = raw_bytes.getvalue()
|
||||||
|
@ -247,95 +246,5 @@ def index():
|
||||||
return jsonify(data)
|
return jsonify(data)
|
||||||
return "Road Damage Detection"
|
return "Road Damage Detection"
|
||||||
|
|
||||||
|
|
||||||
@app.route("/predict/bridge", methods=["POST"])
|
|
||||||
def bridge():
|
|
||||||
if flask.request.method == "POST":
|
|
||||||
if flask.request.files.get("image"):
|
|
||||||
pred_data_colr = []
|
|
||||||
pred_data_inv = []
|
|
||||||
img_src = cv2.imread(flask.request.files["image"], 0)
|
|
||||||
image_dst = resize_keep_aspect_ratio(img_src, (227, 227))
|
|
||||||
bi_inv, colored_img = process_image(image_dst)
|
|
||||||
pred_data_colr.append(colored_img)
|
|
||||||
pred_data_inv.append(bi_inv)
|
|
||||||
final_pred_colr = np.array(pred_data_colr).reshape((len(pred_data_colr), 227, 227, 1))
|
|
||||||
final_pred_inv = np.array(pred_data_inv).reshape((len(pred_data_inv), 227, 227, 1))
|
|
||||||
is_crack = predict_image_util(final_pred_inv)
|
|
||||||
image_np = load_image_into_numpy_array(img_src)
|
|
||||||
img = Image.fromarray(image_np.astype("uint8"))
|
|
||||||
img = img.resize((128, 128))
|
|
||||||
raw_bytes = io.BytesIO()
|
|
||||||
img.save(raw_bytes, "JPEG")
|
|
||||||
raw_bytes.seek(0)
|
|
||||||
img_byte = raw_bytes.getvalue()
|
|
||||||
img_str = base64.b64encode(img_byte)
|
|
||||||
data = {
|
|
||||||
"result": is_crack,
|
|
||||||
"img": img_str.decode('utf-8')
|
|
||||||
}
|
|
||||||
return jsonify(data)
|
|
||||||
else:
|
|
||||||
data = {
|
|
||||||
"code": 10001,
|
|
||||||
"msg": "Could not find image"
|
|
||||||
}
|
|
||||||
return jsonify(data)
|
|
||||||
return "Bridge Detection"
|
|
||||||
|
|
||||||
|
|
||||||
def predict_image_util(final_pred_inv):
|
|
||||||
model = serve_bridge_model()
|
|
||||||
img_test = (final_pred_inv[0].reshape((1, 227, 227, 1)))
|
|
||||||
raw_predicted_label = model.predict(img_test, batch_size=None, verbose=0, steps=None)[0][0]
|
|
||||||
|
|
||||||
predicted_label = 1
|
|
||||||
if raw_predicted_label < 0.8:
|
|
||||||
predicted_label = 0
|
|
||||||
|
|
||||||
predicted_label_str = 'Crack'
|
|
||||||
if predicted_label == 0:
|
|
||||||
predicted_label_str = 'No Crack'
|
|
||||||
|
|
||||||
print('Raw Predicted Label(Numeric): ' + str(raw_predicted_label))
|
|
||||||
print('Predicted Label : ' + predicted_label_str)
|
|
||||||
return predicted_label
|
|
||||||
|
|
||||||
|
|
||||||
def process_image(img):
|
|
||||||
ret, bi_inv = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
|
|
||||||
return bi_inv, img
|
|
||||||
|
|
||||||
|
|
||||||
def resize_keep_aspect_ratio(image_src, dst_size):
|
|
||||||
src_h, src_w = image_src.shape[:2]
|
|
||||||
dst_h, dst_w = dst_size
|
|
||||||
|
|
||||||
# 判断应该按哪个边做等比缩放
|
|
||||||
h = dst_w * (float(src_h) / src_w) # 按照w做等比缩放
|
|
||||||
w = dst_h * (float(src_w) / src_h) # 按照h做等比缩放
|
|
||||||
|
|
||||||
h = int(h)
|
|
||||||
w = int(w)
|
|
||||||
|
|
||||||
if h <= dst_h:
|
|
||||||
image_dst = cv2.resize(image_src, (dst_w, int(h)))
|
|
||||||
else:
|
|
||||||
image_dst = cv2.resize(image_src, (int(w), dst_h))
|
|
||||||
|
|
||||||
h_, w_ = image_dst.shape[:2]
|
|
||||||
|
|
||||||
top = int((dst_h - h_) / 2)
|
|
||||||
down = int((dst_h - h_ + 1) / 2)
|
|
||||||
left = int((dst_w - w_) / 2)
|
|
||||||
right = int((dst_w - w_ + 1) / 2)
|
|
||||||
|
|
||||||
value = [0, 0, 0]
|
|
||||||
border_type = cv2.BORDER_CONSTANT
|
|
||||||
image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, border_type, None, value)
|
|
||||||
|
|
||||||
return image_dst
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
app.run()
|
app.run()
|
||||||
|
|
2
build.sh
2
build.sh
|
@ -1,3 +1,3 @@
|
||||||
# /usr/bash
|
# /usr/bash
|
||||||
|
|
||||||
docker build --tag hpds-bridge-detection:1.0.0 .
|
docker build --tag hpds-road-detection:1.0.0 .
|
||||||
|
|
|
@ -1,13 +1,13 @@
|
||||||
version: "3.6"
|
version: "3.6"
|
||||||
services:
|
services:
|
||||||
hpds-bridge-detection-model:
|
hpds-python-model:
|
||||||
container_name: hpds-bridge-detection-model
|
container_name: hpds-road-detection-model
|
||||||
image: hpds-bridge-detection:1.0.0
|
image: hpds-road-detection:1.0.0
|
||||||
networks:
|
networks:
|
||||||
- hpds-network
|
- hpds-network
|
||||||
restart: always
|
restart: always
|
||||||
ports:
|
ports:
|
||||||
- "8002:5000"
|
- "8000:5000"
|
||||||
volumes:
|
volumes:
|
||||||
- /usr/local/cuda/lib64:/usr/local/cuda/lib64
|
- /usr/local/cuda/lib64:/usr/local/cuda/lib64
|
||||||
|
|
||||||
|
|
|
@ -1,4 +0,0 @@
|
||||||
#/bin/bash
|
|
||||||
|
|
||||||
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
|
|
||||||
|
|
|
@ -3,5 +3,3 @@ numpy==1.19.5
|
||||||
Pillow==7.1.2
|
Pillow==7.1.2
|
||||||
six==1.15.0
|
six==1.15.0
|
||||||
tensorflow==2.5.1
|
tensorflow==2.5.1
|
||||||
opencv-contrib-python==4.5.3.56
|
|
||||||
opencv-python==4.5.3.56
|
|
||||||
|
|
Loading…
Reference in New Issue